Dynamo
Primer for v2.0
简体中文
简体中文
  • 关于
  • 简介
    • 什么是 Dynamo 以及它是如何工作的?
    • Primer 用户手册、Dynamo 社区和平台
  • Dynamo 设置
  • 用户界面
    • 工作空间
    • 库
  • 节点和导线
  • 基本节点和概念
    • 节点索引
    • 计算设计的几何图形
      • 几何图形概述
      • 向量、平面和坐标系
      • 点
      • 曲线
      • 曲面
      • 实体
      • 网格
    • 程序的构建块
      • 数据
      • 数学
      • 逻辑
      • 字符串
      • 颜色
    • 使用列表进行设计
      • 什么是列表
      • 使用列表
      • 列表的列表
      • n 维列表
    • Dynamo 中的词典
      • 什么是词典
      • 词典节点
      • 代码块中的词典
      • Revit 使用案例
  • 自定义节点和软件包
    • 自定义节点
      • 自定义节点简介
      • 创建自定义节点
      • 发布到库
    • 软件包
      • 软件包简介
      • 软件包案例研究 - Mesh Toolkit
      • 开发软件包
      • 发布软件包
      • Zero-Touch 输入
  • 适用于 Revit 的 Dynamo
    • Revit 连接
    • 选择
    • 编辑
    • 创建
    • 自定义
    • 记录
  • Dynamo for Civil 3D
    • Civil 3D 连接
    • 快速入门
    • 节点库
    • 样例工作流
      • 道路
        • 灯杆放置
      • 浇口面
        • 服务设施放置
      • 公共设施
        • 重命名结构
      • 轨道
        • 间隙包络
      • 勘测
        • 点编组管理
    • 高级主题
      • 对象绑定
      • Python 和 Civil 3D
    • Dynamo Player
    • 有用的软件包
    • 资源
  • Forma Beta 版中的 Dynamo
    • 在 Forma 中设置 Dynamo Player
    • 在 Dynamo Player 中添加和共享图形
    • 在 Dynamo Player 中运行图形
    • Dynamo 计算服务与 Desktop Dynamo 的差异
  • 在 Dynamo 中编码
    • 代码块和 DesignScript
      • 什么是代码块
      • DesignScript 语法
      • 简写
      • 函数
    • 使用 DesignScript 的几何图形
      • DesignScript 几何图形基础知识
      • 几何基本体
      • 向量数学
      • 曲线:内插和控制点
      • 平移、旋转和其他变换
      • 曲面:内插、控制点、放样、旋转
      • 几何参数化
      • 相交和修剪
      • 几何布尔
      • Python 点生成器
    • Python
      • Python 节点
      • Python 和 Revit
      • 设置自己的 Python 模板
    • 语言更改
  • 最佳做法
    • 图形策略
    • 脚本编写策略
    • 脚本参考
    • 管理您的程序
    • 在 Dynamo 中高效处理大型数据集
  • 样例工作流
    • 快速入门工作流
      • 参数化花瓶
      • 吸引器点
    • 概念索引
  • 开发人员入门
    • 从源代码构建 Dynamo
      • 从源代码构建 DynamoRevit
      • 在 Dynamo 中管理和更新依赖项
    • 为 Dynamo 开发
      • 快速入门
      • Zero-Touch 案例研究 - 网格节点
      • 在 Zero-Touch 节点中执行 Python 脚本 (C#)
      • 进一步了解 Zero-Touch
      • 高级 Dynamo 节点自定义
      • 在 Dynamo 软件包中使用 COM(互操作)类型
      • NodeModel 案例研究 - 自定义 UI
      • 更新 Dynamo 2.x 的软件包和 Dynamo 库
      • 更新 Dynamo 3.x 的软件包和 Dynamo 库
      • 扩展程序
      • 为 Dynamo 2.0+ 定义自定义软件包组织
      • Dynamo 命令行界面
      • Dynamo 集成
      • 为 Dynamo For Revit 开发
      • 发布软件包
      • 从 Visual Studio 构建软件包
      • 软件包形式的扩展
    • 拉取请求
    • 测试期望
    • 示例
  • 附录
    • 常见问题解答
    • 可视化编程和 Dynamo
    • 资源
    • 发行说明
    • 有用的软件包
    • 示例文件
    • 主体集成图
    • 下载 PDF
    • Dynamo 键盘快捷键
Powered by GitBook
On this page
  • Python 和 Revit
  • 平台特定的 API
  • 练习 1
  • 练习 2
  • 练习 3
Edit on GitHub
Export as PDF
  1. 在 Dynamo 中编码
  2. Python

Python 和 Revit

Python 和 Revit

现在,我们已演示了如何在 Dynamo 中使用 Python 脚本,接下来我们来了解如何将 Revit 库连接到脚本编写环境。请记住,我们输入了 Python 标准和 Dynamo 核心节点,其中代码块中前四行如下所示。要输入 Revit 节点、Revit 图元和 Revit 文档管理器,我们只需添加几行代码即可:

import sys
import clr
clr.AddReference('ProtoGeometry')
from Autodesk.DesignScript.Geometry import *

# Import RevitNodes
clr.AddReference("RevitNodes")
import Revit

# Import Revit elements
from Revit.Elements import *

# Import DocumentManager
clr.AddReference("RevitServices")
import RevitServices
from RevitServices.Persistence import DocumentManager

import System

这样,我们便可以访问 Revit API,并为任何 Revit 任务提供自定义脚本编写。通过将可视化编程流程与 Revit API 脚本编写相结合,协作和工具开发得到显著改进。例如,BIM 经理和方案设计人员可以协同处理同一图形。在此协作中,他们可以改进模型的设计和执行。

平台特定的 API

练习 1

创建新的 Revit 项目。

单击下面的链接下载示例文件。

可以在附录中找到示例文件的完整列表。

在这些练习中,我们将在 Dynamo for Revit 中了解基本的 Python 脚本。本练习将重点介绍如何处理 Revit 文件和图元,以及 Revit 和 Dynamo 之间的通信。

这是一种用于检索与 Dynamo 任务链接的 Revit 文件的 doc、uiapp 和 app 的简便方法。之前使用过 Revit API 的程序员可能会在观察列表中注意到这些项目。如果这些项目看起来不太熟悉,没关系;我们将在下面练习中使用其他示例。

下面介绍如何在 Dynamo 中输入 Revit 服务和检索文档数据。

在 Dynamo 中查看 Python 节点。还可以在下面找到代码:

# Load the Python Standard and DesignScript Libraries
import sys
import clr

#Import DocumentManager
clr.AddReference("RevitServices")
import RevitServices
from RevitServices.Persistence import DocumentManager

#Place your code below this line
doc = DocumentManager.Instance.CurrentDBDocument
uiapp = DocumentManager.Instance.CurrentUIApplication
app = uiapp.Application

#Assign your output to the OUT variable
OUT = [doc,uiapp,app]

练习 2

单击下面的链接下载示例文件。

可以在附录中找到示例文件的完整列表。

在本练习中,我们将在 Revit 中使用 Dynamo Python 节点创建一个简单的模型曲线。

先在 Revit 中创建新的概念体量族。

打开 “概念体量文件夹”,然后使用 “Metric Mass.rft” 模板文件。

在 Revit 中,使用键盘快捷键 un 显示“项目单位设置”,将长度单位更改为“米”。

启动 Dynamo,然后创建下图中的节点集。首先,我们将在 Revit 中基于 Dynamo 节点创建两个参照点。

  1. 创建 “代码块”,并为其赋值 "0;"

  2. 将该值插入 X、Y 和 Z 输入的 “ReferencePoint.ByCoordinates” 节点。

  3. 创建三个滑块,范围从 -100 到 100,步长为 1。

  4. 将每个滑块都连接到 “ReferencePoint.ByCoordinates” 节点。

  5. 将 “Python” 节点添加到工作空间,单击节点上的“+”按钮以添加另一个输入并将两个参照点插入到每个输入。打开 “Python” 节点。

在 Dynamo 中查看 Python 节点。在下面查找完整代码。

  1. System.Array:Revit 需要 “系统数组” 作为输入(而不是 Python 列表)。这只是多一行代码,但注意参数类型将有助于在 Revit 中进行 Python 编程。

import sys
import clr

# Import RevitNodes
clr.AddReference("RevitNodes")
import Revit
#Import Revit elements
from Revit.Elements import *
import System

#define inputs
startRefPt = IN[0]
endRefPt = IN[1]

#define system array to match with required inputs
refPtArray = System.Array[ReferencePoint]([startRefPt, endRefPt])

#create curve by reference points in Revit
OUT = CurveByPoints.ByReferencePoints(refPtArray)

在 Dynamo 中,我们使用 Python 创建了两个参照点以及一条连接它们的线。在下一练习中,我们将进一步介绍。

练习 3

单击下面的链接下载示例文件。

可以在附录中找到示例文件的完整列表。

本练习尽可能简单,但主要介绍将数据和几何图形从 Revit 连接到 Dynamo 和反向操作的主题。首先,打开 Revit-StructuralFraming.rvt。打开后,启动 Dynamo 并打开“Revit-StructuralFraming.dyn”文件。

此 Revit 文件实现的是基本功能。两条参照曲线:一条在标高 1 上绘制,另一条在标高 2 上绘制。我们希望将这些曲线输入 Dynamo,并保持实时链接。

在此文件中,我们有一组节点插入到 Python 节点的五个输入中。

  1. 选择模型图元节点:点击每个节点对应的选择按钮,然后在 Revit 中选择相应曲线。

  2. 代码块: 使用语法 0..1..#x;, 将介于 0 到 20 之间的整数滑块连接到 “x” 输入。这会指定要在两条曲线之间绘制的梁数。

  3. 结构框架类型:此处,我们将从下拉菜单中选择默认的 W12x26 梁。

  4. 标高:选择“标高 1”。

Python 中的这段代码更加密集,但代码中的注释描述了该过程中出现的情况

import clr
#import Dynamo Geometry
clr.AddReference('ProtoGeometry')
from Autodesk.DesignScript.Geometry import *
# Import RevitNodes
clr.AddReference("RevitNodes")
import Revit
# Import Revit elements
from Revit.Elements import *
import System

#Query Revit elements and convert them to Dynamo Curves
crvA=IN[0].Curves[0]
crvB=IN[1].Curves[0]

#Define input Parameters
framingType=IN[3]
designLevel=IN[4]

#Define "out" as a list
OUT=[]

for val in IN[2]:
	#Define Dynamo Points on each curve
	ptA=Curve.PointAtParameter(crvA,val)
	ptB=Curve.PointAtParameter(crvB,val)
	#Create Dynamo line
	beamCrv=Line.ByStartPointEndPoint(ptA,ptB)
	#create Revit Element from Dynamo Curves
	beam = StructuralFraming.BeamByCurve(beamCrv,designLevel,framingType)
	#convert Revit Element into list of Dynamo Surfaces
	OUT.append(beam.Faces)

在 Revit 中,我们有一组横跨两条曲线的梁作为结构图元。注意:这不是一个真实示例...结构图元用作从 Dynamo 创建的原生 Revit 实例的示例。

在 Dynamo 中,我们也可以看到结果。“Watch3D” 节点中的梁引用从 Revit 图元查询所得的几何图形。

请注意,我们有一个连续过程,将数据从 Revit 环境转换到 Dynamo 环境。总之,下面介绍了该过程的具体流程:

  1. 选择 Revit 图元

  2. 将 Revit 图元转换为 Dynamo 曲线

  3. 将 Dynamo 曲线分割为一系列 Dynamo 点

  4. 使用两条曲线之间的 Dynamo 点来创建 Dynamo 线

  5. 通过参照 Dynamo 线创建 Revit 梁

  6. 通过查询 Revit 梁的几何图形输出 Dynamo 曲面

这听起来可能有点费劲,但脚本使它变得简单,就像在 Revit 中编辑曲线并重新运行求解器一样(尽管这样做可能必须删除以前的梁)。这是因为我们在 Pyhon 中放置梁,从而打破了 OOTB 节点的关联。

在 Revit 中更新参照曲线后,我们会得到新的梁阵列。

PreviousPython 节点Next设置自己的 Python 模板

Last updated 2 months ago

Dynamo 项目背后的计划是拓宽平台实施范围。随着 Dynamo 向 Docket 中添加更多程序,用户将可以从 Python 脚本编写环境访问特定于平台的 API。尽管 Revit 是本部分的案例研究,但我们可以预见将来会有更多章节,这些章节会提供有关在其他平台上编写脚本的综合教程。此外,现在还有许多 库可供访问,这些库都可以输入到 Dynamo 中!

下面的示例演示了在 Dynamo 中使用 Python 实现特定于 Revit 操作的方法。有关 Python 与 Dynamo 和 Revit 关系的更详细综述,请参见 。Python 和 Revit 的另一个有用资源是 项目。

IronPython
Dynamo Wiki 页面
Revit Python Shell
2KB
Revit-Doc.dyn
10KB
Revit-ReferenceCurve.dyn
3MB
Revit-StructuralFraming.zip
archive