Dynamo
Primer for v2.0
日本語
日本語
  • この Web サイトについて
  • はじめに
    • Dynamo とは、その動作の仕組みとは
    • Primer ユーザ ガイド、Dynamo コミュニティ、プラットフォーム
  • Dynamo のセットアップ
  • ユーザ インタフェース
    • ワークスペース
    • ライブラリ
  • ノードとワイヤ
  • 基本ノードと概念
    • ノードの索引
    • 計算設計用のジオメトリ
      • ジオメトリの概要
      • ベクトル、平面、座標系
      • 点群
      • 曲線
      • サーフェス
      • 立体
      • メッシュ
    • プログラムの構成要素
      • データ
      • 数学的方法
      • ロジック
      • 文字列
      • 色
    • リストを使用した設計
      • リストの概要
      • リストの操作
      • リストのリスト
      • N 次元のリスト
    • Dynamo のディクショナリ
      • ディクショナリとは
      • [Dictionary]カテゴリのノード
      • コード ブロックにおけるディクショナリ
      • Revit での使用例
  • カスタム ノードとパッケージ
    • カスタム ノード
      • カスタム ノードの概要
      • カスタム ノードを作成する
      • ライブラリへのパブリッシュ
    • パッケージ
      • パッケージの概要
      • パッケージのケース スタディ - Mesh Toolkit
      • パッケージを開発する
      • パッケージをパブリッシュする
      • Zero-Touch Importing
  • Revit 用の Dynamo
    • Revit との連携
    • 選択
    • 編集
    • 作成
    • カスタマイズ
    • 設計図書の作成
  • Dynamo for Civil 3D
    • Civil 3D の接続
    • スタートアップ
    • ノード ライブラリ
    • サンプル ワークフロー
      • 道路
        • 照明柱の配置
      • 土地
        • サービスの配置
      • ユーティリティ
        • 構造物の名前を変更する
      • 軌道
        • クリアランスのエンベロープ
      • 測量
        • ポイント グループ管理
    • 高度なトピック
      • オブジェクト バインド
      • Python と Civil 3D
    • Dynamo プレーヤ
    • 便利なパッケージ
    • リソース
  • Dynamo in Forma Beta
    • Forma で Dynamo Player を設定する
    • Dynamo Player でグラフを追加、共有する
    • Dynamo Player でグラフを実行する
    • Dynamo コンピューティング サービスとデスクトップ版 Dynamo の違い
  • Dynamo でのコーディング
    • コード ブロックと DesignScript
      • コード ブロックとは
      • DesignScript 構文
      • 省略表記
      • 関数
    • DesignScript を使用するジオメトリ
      • DesignScript ジオメトリの基本
      • ジオメトリ プリミティブ
      • ベクトル計算
      • 曲線: 補間および制御点
      • 移動、回転、およびその他の変換
      • サーフェス: 補間、制御点、ロフト、回転
      • ジオメトリのパラメータ化
      • 交差およびトリム
      • ジオメトリのブール演算
      • Python 点ジェネレータ
    • Python
      • Python Script ノード
      • Python と Revit
      • 独自の Python テンプレートを設定する
    • 言語の変更
  • ベスト プラクティス
    • 見やすいプログラムを作成するためのガイドライン
    • スクリプト作成のガイドライン
    • スクリプト リファレンス
    • プログラムを管理する
    • Dynamo で大規模なデータ セットを効率的に操作する
  • サンプル ワークフロー
    • スタートアップ ワークフロー
      • パラメータを使用する花瓶
      • アトラクタ ポイント
    • 概念インデックス
  • 開発者向け Primer
    • ソースから Dynamo をビルドする
      • ソースから DynamoRevit をビルドする
      • Dynamo での依存関係の管理と更新
    • Dynamo 向けの開発
      • スタートアップ
      • Zero-Touch ケース スタディ - グリッド ノード
      • Zero-Touch ノードで Python スクリプトを実行する(C#)
      • Zero-Touch の詳細を確認する
      • Dynamo ノードの高度なカスタマイズ
      • Dynamo パッケージで COM (相互運用)タイプを使用する
      • NodeModel ケース スタディ - カスタム UI
      • Dynamo 2.x 用のパッケージと Dynamo ライブラリを更新する
      • Dynamo 3.x 用のパッケージと Dynamo ライブラリを更新する
      • 拡張機能
      • Dynamo 2.0+ のカスタム パッケージ編成を定義する
      • Dynamo コマンド ライン インタフェース
      • Dynamo の統合
      • Dynamo for Revit 向けの開発
      • パッケージをパブリッシュする
      • Visual Studio からパッケージをビルドする
      • パッケージとしての拡張機能
    • プル リクエスト
    • テストによる期待
    • サンプル
  • 付録
    • よくある質問(FAQ)
    • ビジュアル プログラミングと Dynamo
    • リソース
    • リリース ノート
    • 便利なパッケージ
    • サンプル ファイル
    • ホスト統合マップ
    • PDF をダウンロード
    • Dynamo のキーボード ショートカット
Powered by GitBook
On this page
  • 移動
  • 回転
  • スケール
Edit on GitHub
Export as PDF
  1. Dynamo でのコーディング
  2. DesignScript を使用するジオメトリ

移動、回転、およびその他の変換

Previous曲線: 補間および制御点Nextサーフェス: 補間、制御点、ロフト、回転

Last updated 2 years ago

3 次元空間で X、Y、Z 座標を明示的に指定することで、特定のジオメトリ オブジェクトを作成できます。ただし、多くの場合、オブジェクト自体またはその基礎となる座標系でジオメトリ変換を使用して、ジオメトリを最終的な位置に移動します。

移動

最も単純な幾何学的変換は移動であり、オブジェクトを X、Y、Z 軸方向に指定した単位の数だけ動かします。

// create a point at x = 1, y = 2, z = 3
p = Point.ByCoordinates(1, 2, 3);

// translate the point 10 units in the x direction,
// -20 in y, and 50 in z
// p2’s new position is x = 11, y = -18, z = 53
p2 = p.Translate(10, -20, 50);

回転

Dynamo 内のすべてのオブジェクトは、オブジェクト名の末尾に .Translate メソッドを追加することで移動できますが、より複雑な変換では、基礎となる座標系から新しい座標系にオブジェクトを変換する必要があります。たとえば、オブジェクトを X 軸を中心にして 45 度回転させるには、回転していない既存の座標系から、.Transform メソッドで X 軸を中心にして 45 度回転した座標系にオブジェクトを移動します。

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),
    10, 10, 10);

new_cs = CoordinateSystem.Identity();
new_cs2 = new_cs.Rotate(Point.ByCoordinates(0, 0),
    Vector.ByCoordinates(1,0,0.5), 25);

// get the existing coordinate system of the cube
old_cs = CoordinateSystem.Identity();

cube2 = cube.Transform(old_cs, new_cs2);

スケール

移動と回転に加えて、スケール変更やせん断変形された座標系も作成できます。座標系のスケールは .Scale メソッドを使用して変更できます。

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),
    10, 10, 10);

new_cs = CoordinateSystem.Identity();
new_cs2 = new_cs.Scale(20);

old_cs = CoordinateSystem.Identity();

cube2 = cube.Transform(old_cs, new_cs2);

せん断変形された座標系は、非直交ベクトルを CoordinateSystem コンストラクタに入力することで作成されます。

new_cs = CoordinateSystem.ByOriginVectors(
    Point.ByCoordinates(0, 0, 0),
	Vector.ByCoordinates(-1, -1, 1),
	Vector.ByCoordinates(-0.4, 0, 0));

old_cs = CoordinateSystem.Identity();

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),
    5, 5, 5);

new_curves = cube.Transform(old_cs, new_cs);

スケール変更とせん断変形は回転や移動よりも比較的複雑なジオメトリ変換であるため、すべての Dynamo オブジェクトで実行できるわけではありません。次の表は、スケールが均一でない座標系およびせん断変形された座標系を持つことができる Dynamo オブジェクトの概略です。

クラス
スケールが均一でない座標系
せん断変形された座標系

円弧

不可

不可

NURBS 曲線

可

可

NURBS 曲面

不可

不可

円

不可

不可

線分

可

可

平面

不可

不可

点

可

可

ポリゴン

不可

不可

ソリッド

不可

不可

サーフェス

不可

不可

文字

不可

不可