Dynamo
Primer for v2.0
한국어
한국어
  • 정보
  • 소개
    • Dynamo의 정의 및 작동 방식
    • Primer 사용자 안내서, Dynamo Community 및 플랫폼
  • Dynamo 설정
  • 사용자 인터페이스
    • 작업공간
    • 라이브러리
  • 노드 및 와이어
  • 필수 노드 및 개념
    • 노드의 색인
    • 계산 방식 설계를 위한 형상
      • 형상 개요
      • 벡터, 평면 및 좌표계
      • 점
      • 곡선
      • 표면
      • 솔리드
      • 메쉬
    • 프로그램의 빌딩 블록
      • 데이터
      • 수학
      • 논리
      • 문자열
      • 색상
    • 리스트로 설계
      • 리스트란 무엇입니까?
      • 리스트 작업
      • 리스트의 리스트
      • n차원 리스트
    • Dynamo의 사전
      • 사전이란
      • 사전 노드
      • 코드 블록의 사전
      • Revit 사용 사례
  • 사용자 노드 및 패키지
    • 사용자 노드
      • 사용자 노드 소개
      • 사용자 노드 작성
      • 라이브러리에 게시
    • 패키지
      • 패키지 소개
      • 패키지 성공 사례 - Mesh Toolkit
      • 패키지 개발
      • 패키지 게시하기
      • Zero-Touch 가져오기
  • Revit용 Dynamo
    • Revit 연결
    • 선택
    • 편집
    • 작성
    • 사용자화
    • 문서화
  • Dynamo for Civil 3D
    • Civil 3D 연결
    • 시작하기
    • 노드 라이브러리
    • 샘플 워크플로우
      • 도로
        • 등주 배치
      • 토지
        • 서비스 배치
      • 유틸리티
        • 구조물 이름 바꾸기
      • 레일
        • 클리어런스 엔벨로프
      • 측량
        • 점 그룹 관리
    • 고급 항목
      • 객체 바인딩
      • Python 및 Civil 3D
    • Dynamo 플레이어
    • 유용한 패키지
    • 리소스
  • Forma 베타의 Dynamo
    • Forma에서 Dynamo Player 설정
    • Dynamo Player에서 그래프 추가 및 공유
    • Dynamo Player에서 그래프 실행
    • Dynamo 컴퓨팅 서비스와 Desktop Dynamo의 차이점
  • Dynamo의 코딩
    • 코드 블록과 DesignScript
      • Code Block이란
      • DesignScript 구문
      • 축약형
      • 함수
    • DesignScript를 사용한 형상
      • DesignScript 형상 기본 사항
      • 기하학적 원형
      • 벡터 수학
      • 곡선: 보간 및 제어점
      • 전환, 회전 및 기타 변환
      • 표면: 보간, 제어점, 로프트, 회전
      • 기하학적 매개변수화
      • 교차 및 자르기
      • 기하학적 부울
      • Python 점 생성기
    • Python
      • Python 노드
      • Python 및 Revit
      • 자체 Python 템플릿 설정
    • 언어 변경 사항
  • 모범 사례
    • 그래프 전략
    • 스크립팅 전략
    • 스크립팅 참조
    • 프로그램 관리
    • Dynamo에서 대규모 데이터 세트로 효율적으로 작업
  • 샘플 워크플로우
    • 시작하기 워크플로우
      • 파라메트릭 꽃병
      • 어트랙터 점
    • 개념 색인
  • 개발자 입문서
    • 소스에서 Dynamo 빌드하기
      • 소스에서 DynamoRevit 빌드하기
      • Dynamo의 종속성 관리 및 업데이트
    • Dynamo를 위한 개발
      • 시작하기
      • Zero-Touch 사례 연구 - 그리드 노드
      • Zero-Touch 노드에서 Python 스크립트 실행하기(C#)
      • Zero-Touch로 한 단계 더 나아가기
      • 고급 Dynamo 노드 사용자 정의
      • Dynamo 패키지에서 COM(interop) 유형 사용
      • NodeModel 사례 연구 - 사용자 지정 UI
      • Dynamo 2.x용 패키지 및 Dynamo 라이브러리 업데이트하기
      • Dynamo 3.x용 패키지 및 Dynamo 라이브러리 업데이트하기
      • 확장
      • Dynamo 2.0+에 대한 사용자 패키지 구성 정의
      • Dynamo 명령행 인터페이스
      • Dynamo 통합
      • Dynamo For Revit을 위한 개발
      • 패키지 게시하기
      • Visual Studio에서 패키지 빌드하기
      • 패키지로 제공되는 확장
    • 끌어오기 요청
    • 테스트 기대치
    • 예제
  • 부록
    • 질문과 대답(FAQ)
    • 시각적 프로그래밍 및 Dynamo
    • 리소스
    • 릴리즈 정보
    • 유용한 패키지
    • 예제 파일
    • 호스트 통합 맵
    • PDF 다운로드
    • Dynamo 키보드 바로 가기
Powered by GitBook
On this page
  • 이동
  • 회전
  • 축척
Edit on GitHub
Export as PDF
  1. Dynamo의 코딩
  2. DesignScript를 사용한 형상

전환, 회전 및 기타 변환

Previous곡선: 보간 및 제어점Next표면: 보간, 제어점, 로프트, 회전

Last updated 2 years ago

3D 공간에서 x, y, z 좌표를 명시적으로 지정하여 특정 형상 객체를 작성할 수 있습니다. 그러나 형상은 객체 자체 또는 기본 CoordinateSystem에서 기하학적 변환을 사용하여 최종 위치로 이동되는 경우가 더 많습니다.

이동

가장 간단한 기하학적 변환은 x, y, z 방향으로 지정된 단위 수만큼 객체를 이동하는 전환입니다.

// create a point at x = 1, y = 2, z = 3
p = Point.ByCoordinates(1, 2, 3);

// translate the point 10 units in the x direction,
// -20 in y, and 50 in z
// p2’s new position is x = 11, y = -18, z = 53
p2 = p.Translate(10, -20, 50);

회전

Dynamo의 모든 객체는 .Translate 메서드를 객체 이름의 끝에 추가하여 변환할 수 있지만, 좀 더 복잡한 변환은 기본 CoordinateSystem에서 새 CoordinateSystem으로 객체를 변환해야 합니다. 예를 들어 객체를 x축을 중심으로 45도 회전하려면 객체를 회전 없는 기존 CoordinateSystem에서 .Transform 메서드를 사용하여 x축을 중심으로 45도 회전한 CoordinateSystem으로 변환해야 합니다.

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),
    10, 10, 10);

new_cs = CoordinateSystem.Identity();
new_cs2 = new_cs.Rotate(Point.ByCoordinates(0, 0),
    Vector.ByCoordinates(1,0,0.5), 25);

// get the existing coordinate system of the cube
old_cs = CoordinateSystem.Identity();

cube2 = cube.Transform(old_cs, new_cs2);

축척

CoordinateSystem은 변환 및 회전뿐 아니라 축척 또는 전단이 조정되어 작성될 수도 있습니다. CoordinateSystem은 다음과 같이 .Scale 메서드로 축척할 수 있습니다.

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),
    10, 10, 10);

new_cs = CoordinateSystem.Identity();
new_cs2 = new_cs.Scale(20);

old_cs = CoordinateSystem.Identity();

cube2 = cube.Transform(old_cs, new_cs2);

전단된 CoordinateSystem은 직교하지 않는 벡터를 CoordinateSystem 생성자에 입력하여 작성합니다.

new_cs = CoordinateSystem.ByOriginVectors(
    Point.ByCoordinates(0, 0, 0),
	Vector.ByCoordinates(-1, -1, 1),
	Vector.ByCoordinates(-0.4, 0, 0));

old_cs = CoordinateSystem.Identity();

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),
    5, 5, 5);

new_curves = cube.Transform(old_cs, new_cs);

축척 및 전단은 회전 및 변환보다 비교적 더 복잡한 기하학적 변환이므로 모든 Dynamo 객체가 이러한 변환을 거치는 것은 아닙니다. 다음 표는 균일하지 않게 축척이 조정된 CoordinateSystem 및 전단된 CoordinateSystem이 있을 수 있는 Dynamo 객체를 간략하게 설명합니다.

클래스
균일하지 않게 축척이 조정된 CoordinateSystem
전단 CoordinateSystem

호

아니요

아니오

NurbsCurve

예

예

NurbsSurface

아니요

아니오

원

아니요

아니오

선

예

예

평면

아니요

아니오

점

예

예

폴리곤

아니요

아니오

솔리드

아니요

아니오

표면

아니요

아니오

문자

아니요

아니요