Dynamo
Primer for v2.0
Deutsch
Deutsch
  • Info
  • Einführung
    • Was ist Dynamo und wie funktioniert die Anwendung?
    • Primer-Leitfaden, Dynamo-Community und -Plattform
  • Setup für Dynamo
  • Benutzeroberfläche
    • Arbeitsbereich
    • Bibliothek
  • Blöcke und Drähte
  • Wichtige Blöcke und Konzepte
    • Index der Blöcke
    • Geometrie für computergestützte Konstruktion
      • Geometrie - Überblick
      • Vektor, Ebene und Koordinatensystem
      • Punkte
      • Kurven
      • Oberflächen
      • Volumenkörper
      • Netze
    • Bausteine von Programmen
      • Daten
      • Math
      • Logik
      • Zeichenfolgen
      • Farbe
    • Entwerfen mit Listen
      • Was ist eine Liste?
      • Arbeiten mit Listen
      • Listen von Listen
      • n-dimensionale Listen
    • Wörterbücher in Dynamo
      • Was ist ein Wörterbuch?
      • Wörterbuch-Blöcke
      • Wörterbücher in Codeblöcken
      • Revit-Anwendungsfälle
  • Benutzerdefinierte Blöcke und Pakete
    • Benutzerdefinierte Blöcke
      • Benutzerdefinierte Blöcke - Einführung
      • Erstellen eines benutzerdefinierten Blocks
      • Publizieren in der Bibliothek
    • Pakete
      • Pakete - Einführung
      • Fallstudie zu Paketen: Mesh Toolkit
      • Entwickeln von Paketen
      • Publizieren von Paketen
      • Zerotouch-Import
  • Dynamo für Revit
    • Verbindung zu Revit
    • Auswählen
    • Bearbeiten
    • Erstellen
    • Anpassen
    • Dokumentation
  • Dynamo for Civil 3D
    • Die Civil 3D-Verbindung
    • Erste Schritte
    • Blockbibliothek
    • Beispielarbeitsabläufe
      • Straßen
        • Lichtmastenplatzierung
      • Land
        • Platzieren von Hausanschlüssen
      • Versorgung
        • Umbenennen von Schächten/Bauwerken
      • Schiene
        • Lichtraumprofil
      • Vermessung
        • Punktgruppenverwaltung
    • Fortgeschrittene Themen
      • Objektbindung
      • Python und Civil 3D
    • Dynamo Player
    • Nützliche Pakete
    • Ressourcen
  • Dynamo in Forma Beta
    • Einrichten von Dynamo Player in Forma
    • Hinzufügen und Freigeben von Diagrammen in Dynamo Player
    • Ausführen von Diagrammen in Dynamo Player
    • Unterschiede der Dynamo-Computing-Services bei Dynamo Desktop
  • Codierung in Dynamo
    • Codeblöcke und DesignScript
      • Was ist ein Codeblock?
      • DesignScript-Syntax
      • Kurzschreibweisen
      • Funktionen
    • Geometrie mit DesignScript
      • DesignScript-Geometriegrundlagen
      • Geometrische Grundkörper
      • Vektormathematik
      • Kurven: Interpolierte Punkte und Steuerpunkte
      • Verschiebung, Drehung und andere Transformationen
      • Oberflächen: Interpolation, Steuerpunkte, Erhebung, Drehung
      • Geometrische Parametrisierung
      • Schnittpunkt und Stutzen
      • Geometrische boolesche Operationen
      • Python-Punkt-Generatoren
    • Python
      • Python-Blöcke
      • Python und Revit
      • Einrichten einer eigenen Python-Vorlage
    • Änderungen der Sprache
  • Optimale Verfahren
    • Vorgehensweisen für Diagramme
    • Vorgehensweisen zur Skripterstellung
    • Referenz für die Skripterstellung
    • Verwalten Ihres Programms
    • Effizientes Arbeiten mit großen Datensätzen in Dynamo
  • Beispielarbeitsabläufe
    • Erste Schritte - Arbeitsabläufe
      • Parametrische Vase
      • Attraktorpunkte
    • Konzeptindex
  • Developer Primer
    • Erstellen von Dynamo aus Quelldateien
      • Erstellen von DynamoRevit aus Quelldateien
      • Verwalten und Aktualisieren von Abhängigkeiten in Dynamo
    • Entwickeln für Dynamo
      • Erste Schritte
      • Zero-Touch-Fallstudie - Rasterblock
      • Ausführen von Python-Skripts in Zero-Touch-Blöcken (C#)
      • Weitere Schritte mit Zero-Touch
      • Erweiterte Anpassung von Dynamo-Blöcken
      • Verwenden von COM-Typen (Interop-Typen) in Dynamo-Paketen
      • NodeModel-Fallstudie – Angepasste Benutzeroberfläche
      • Aktualisieren der Pakete und Dynamo-Bibliotheken für Dynamo 2.x
      • Aktualisieren der Pakete und Dynamo-Bibliotheken für Dynamo 3.x
      • Erweiterungen
      • Definieren einer benutzerdefinierten Paketorganisation für Dynamo 2.0+
      • Dynamo-Befehlszeilenschnittstelle
      • Dynamo-Integration
      • Entwickeln für Dynamo for Revit
      • Publizieren eines Pakets
      • Erstellen eines Pakets in Visual Studio
      • Erweiterungen als Pakete
    • Pull-Anforderungen
    • Erwartungen beim Testen
    • Beispiele
  • Anhang
    • Häufig gestellte Fragen
    • Visuelle Programmierung und Dynamo
    • Ressourcen
    • Versionshinweise
    • Nützliche Pakete
    • Beispieldateien
    • Host-Integrationskarte
    • Herunterladen der PDF-Datei
    • Dynamo-Tastaturkürzel
Powered by GitBook
On this page
  • Union
  • Difference
  • Intersect
Edit on GitHub
Export as PDF
  1. Codierung in Dynamo
  2. Geometrie mit DesignScript

Geometrische boolesche Operationen

PreviousSchnittpunkt und StutzenNextPython-Punkt-Generatoren

Last updated 2 years ago

Intersect, Trim und SelectTrim werden hauptsächlich für niedrigerdimensionale Geometrien wie Punkte, Kurven und Oberflächen genutzt. Volumenkörper-Geometrie verfügt über einen zusätzlichen Satz von Methoden zum Ändern der Form nach ihrer Erstellung, sowohl durch Subtraktion von Material, ähnlich wie Trim, als auch durch Kombination von Elementen zu einem größeren Ganzen.

Union

Die Methode Union nimmt zwei Volumenkörper-Objekte und erstellt ein einzelnes Volumenkörper-Objekt aus dem Raum, der von beiden Objekten abgedeckt wird. Der Überlappungsbereich zwischen den einzelnen Objekten wird zur endgültigen Form kombiniert. In diesem Beispiel werden eine Kugel und ein Quader in einer einzigen Volumenkörper-Kugel-Quader-Form kombiniert:

s1 = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin, 6);

s2 = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin.Translate(4, 0,
    0), 6);

combined = s1.Union(s2);

Difference

Die Methode Difference subtrahiert ähnlich wie Trim die Inhalte des eingegebenen Werkzeug-Volumenkörpers vom Basis-Volumenkörper. In diesem Beispiel kerben wir eine Kugel leicht ein:

s = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin, 6);

tool = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin.Translate(10, 0,
    0), 6);

result = s.Difference(tool);

Intersect

Die Methode Intersect gibt den überlappenden Volumenkörper zwischen zwei Eingabe-Volumenkörpern zurück. Im folgenden Beispiel wurde Difference in Intersect geändert, und der resultierende Volumenkörper entspricht dem ursprünglich eingekerbten Leerraum:

s = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin, 6);

tool = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin.Translate(10, 0,
    0), 6);

result = s.Intersect(tool);