Dynamo
Primer for v2.0
Polski
Polski
  • Informacje
  • Wprowadzenie
    • Co to jest dodatek Dynamo i jak działa?
    • Podręcznik użytkownika Primer, społeczność i platforma dodatku Dynamo
  • Ustawienia dla dodatku Dynamo
  • Interfejs użytkownika
    • Obszar roboczy
    • Biblioteka
  • Węzły i przewody
  • Podstawowe węzły i pojęcia
    • Indeks węzłów
    • Geometria do projektowania obliczeniowego
      • Geometria — przegląd
      • Wektor, płaszczyzna i układ współrzędnych
      • Punkty
      • Krzywe
      • Powierzchnie
      • Bryły
      • Siatki
    • Składniki programów
      • Dane
      • Matematyka
      • Logika
      • Ciągi
      • Kolor
    • Projektowanie z użyciem list
      • Co to jest lista
      • Praca z listami
      • Listy list
      • Listy n-wymiarowe
    • Słowniki w dodatku Dynamo
      • Co to jest słownik
      • Węzły słownika
      • Słowniki w blokach kodu
      • Przypadki zastosowań w programie Revit
  • Węzły i pakiety niestandardowe
    • Węzły niestandardowe
      • Węzeł niestandardowy — wprowadzenie
      • Tworzenie węzła niestandardowego
      • Publikowanie w bibliotece użytkownika
    • Pakiety
      • Pakiet — wprowadzenie
      • Analiza przypadku pakietu — zestaw Mesh Toolkit
      • Opracowywanie pakietu
      • Publikowanie pakietu
      • Zero-Touch — importowanie
  • Dynamo dla programu Revit
    • Połączenie programu Revit
    • Wybieranie
    • Edytowanie
    • Tworzenie
    • Dostosowywanie
    • Dokumentowanie
  • Dynamo for Civil 3D
    • Połączenie z programem Civil 3D
    • Pierwsze kroki
    • Biblioteka węzłów
    • Przykładowe procesy robocze
      • Drogi
        • Umieszczanie słupa oświetleniowego
      • Teren
        • Umieszczanie doprowadzeń usług komunalnych
      • Narzędzia
        • Zmienianie nazw konstrukcji
      • Kolej
        • Obwiednia prześwitu
      • Pomiary
        • Zarządzanie grupami punktów
    • Tematy zaawansowane
      • Wiązanie obiektów
      • Język Python i program Civil 3D
    • Dynamo Player
    • Przydatne pakiety
    • Zasoby
  • Dodatek Dynamo w programie Forma w wersji beta
    • Konfigurowanie programu Dynamo Player w programie Forma
    • Dodawanie i udostępnianie wykresów w programie Dynamo Player
    • Uruchamianie wykresów w programie Dynamo Player
    • Różnice między usługami obliczeniowymi dodatku Dynamo a dodatkiem Dynamo na komputerze
  • Kodowanie w dodatku Dynamo
    • Bloki kodu i język DesignScript
      • Co to jest blok kodu
      • Składnia języka DesignScript
      • Krótka składnia
      • Funkcje
    • Geometria przy użyciu języka DesignScript
      • Geometria DesignScript — podstawy
      • Geometryczne obiekty elementarne
      • Matematyka wektorowa
      • Krzywe: interpolowane i punkty kontrolne
      • Przekształcenie, obrót i inne transformacje
      • Powierzchnie: interpolowane, punkty kontrolne, wyciągnięcie złożone, obrót
      • Parametryzacja geometryczna
      • Przecięcie i ucinanie
      • Geometryczne wartości logiczne
      • Generatory punktów w języku Python
    • Python
      • Węzły języka Python
      • Python i Revit
      • Konfigurowanie własnego szablonu w języku Python
    • Zmiany języka
  • Wzorce postępowania
    • Strategie dotyczące wykresów
    • Strategie dotyczące skryptów
    • Dokumentacja obsługi skryptów
    • Zarządzanie programem
    • Wydajna praca z dużymi zestawami danych w dodatku Dynamo
  • Przykładowe procesy robocze
    • Procesy robocze — pierwsze kroki
      • Wazon parametryczny
      • Punkty przyciągania
    • Indeks pojęć
  • Przewodnik Primer programisty
    • Kompilowanie dodatku Dynamo ze źródła
      • Kompilowanie dodatku DynamoRevit ze źródła
      • Zarządzanie zależnościami i ich aktualizowanie w dodatku Dynamo
    • Opracowywanie rozwiązań dla dodatku Dynamo
      • Pierwsze kroki
      • Analiza przypadku Zero-Touch — węzeł siatki
      • Wykonywanie skryptów w języku Python w węzłach Zero-Touch (C#)
      • Dalsze kroki z Zero-Touch
      • Zaawansowane dostosowywanie węzłów dodatku Dynamo
      • Używanie typów COM (międzyoperacyjnych) w pakietach dodatku Dynamo
      • Analiza przypadku NodeModel — niestandardowy interfejs użytkownika
      • Aktualizowanie pakietów i bibliotek dodatku Dynamo dla dodatku Dynamo 2.x
      • Aktualizowanie pakietów i bibliotek dodatku Dynamo dla dodatku Dynamo 3.x
      • Rozszerzenia
      • Definiowanie niestandardowej organizacji pakietów dla dodatku Dynamo 2.0+
      • Interfejs wiersza polecenia dodatku Dynamo
      • Integracja z dodatkiem Dynamo
      • Opracowywanie rozwiązań dla dodatku Dynamo dla programu Revit
      • Publikowanie pakietu
      • Kompilowanie pakietu z programu Visual Studio
      • Rozszerzenia jako pakiety
    • Prośby o ściągnięcie (pull)
    • Oczekiwania dotyczące testowania
    • Przykłady
  • Dodatek
    • Często zadawane pytania
    • Programowanie wizualne i dodatek Dynamo
    • Zasoby
    • Uwagi do wydania
    • Przydatne pakiety
    • Pliki przykładowe
    • Mapa integracji hosta
    • Pobierz plik PDF
    • Skróty klawiaturowe dodatku Dynamo
Powered by GitBook
On this page
  • Krzywa interpolowana
  • Krzywa punktów kontrolnych
Edit on GitHub
Export as PDF
  1. Kodowanie w dodatku Dynamo
  2. Geometria przy użyciu języka DesignScript

Krzywe: interpolowane i punkty kontrolne

PreviousMatematyka wektorowaNextPrzekształcenie, obrót i inne transformacje

Last updated 2 years ago

W dodatku Dynamo istnieją dwa podstawowe sposoby tworzenia krzywych o dowolnych kształtach: określanie kolekcji punktów i interpolowanie gładkiej krzywej między nimi za pomocą dodatku Dynamo oraz metoda niższego poziomu polegająca na określeniu bazowych punktów kontrolnych krzywej o określonym stopniu. Krzywe interpolowane są przydatne, gdy projektant dokładnie wie, jaką postać powinna przyjąć linia, lub gdy projekt ma specyficzne ograniczenia dotyczące tego, przez co krzywa może i nie może przechodzić. Krzywe określone za pomocą punktów kontrolnych są w istocie serią segmentów linii prostej, które algorytm wygładza do końcowej postaci krzywej. Określenie krzywej za pomocą punktów sterujących może być przydatne w przypadku badania postaci krzywych o różnych stopniach wygładzenia lub gdy wymagana jest gładka ciągłość między segmentami krzywej.

Krzywa interpolowana

Aby utworzyć krzywą interpolowaną, wystarczy przekazać kolekcję punktów do metody NurbsCurve.ByPoints.

num_pts = 6;

s = Math.Sin(0..360..#num_pts) * 4;

pts = Point.ByCoordinates(1..30..#num_pts, s, 0);

int_curve = NurbsCurve.ByPoints(pts);

Wygenerowana krzywa przecina każdy z punktów wejściowych, zaczynając i kończąc odpowiednio na pierwszym i ostatnim punkcie w kolekcji. Opcjonalny parametr okresowy pozwala utworzyć krzywą okresową, która jest zamknięta. Dodatek Dynamo automatycznie wypełni brakujący segment, dlatego powielony punkt końcowy (identyczny z punktem początkowym) nie jest potrzebny.

pts = Point.ByCoordinates(Math.Cos(0..350..#10),
    Math.Sin(0..350..#10), 0);

// create an closed curve
crv = NurbsCurve.ByPoints(pts, true);

// the same curve, if left open:
crv2 = NurbsCurve.ByPoints(pts.Translate(5, 0, 0),
    false);

Krzywa punktów kontrolnych

Krzywe NurbsCurve są generowane w ten sam sposób, przy czym punkty wejściowe reprezentują punkty końcowe segmentu linii prostej, a drugi parametr, nazywany stopniem, określa wielkość i typ wygładzania krzywej.* Krzywa stopnia 1. nie ma wygładzenia; to polilinia.

num_pts = 6;

pts = Point.ByCoordinates(1..30..#num_pts,
    Math.Sin(0..360..#num_pts) * 4, 0);

// a B-Spline curve with degree 1 is a polyline
ctrl_curve = NurbsCurve.ByControlPoints(pts, 1);

Krzywa stopnia 2. zostaje wygładzona w taki sposób, że przecina i jest styczna do punktu środkowego segmentów polilinii:

num_pts = 6;

pts = Point.ByCoordinates(1..30..#num_pts,
    Math.Sin(0..360..#num_pts) * 4, 0);

// a B-Spline curve with degree 2 is smooth
ctrl_curve = NurbsCurve.ByControlPoints(pts, 2);

Dodatek Dynamo obsługuje krzywe NURBS (niejednorodne wymierne B-splajn) do 20. stopnia, a poniższy skrypt ilustruje wpływ zwiększającego się poziomu wygładzania na kształt krzywej:

num_pts = 6;

pts = Point.ByCoordinates(1..30..#num_pts,
    Math.Sin(0..360..#num_pts) * 4, 0);

def create_curve(pts : Point[], degree : int)
{
	return = NurbsCurve.ByControlPoints(pts,
        degree);
}

ctrl_crvs = create_curve(pts, 1..11);

Należy zwrócić uwagę, że musi istnieć co najmniej jeden punkt kontrolny więcej, niż wynosi stopień krzywej.

Inną zaletą tworzenia krzywych przez wierzchołki kontrolne jest możliwość utrzymania styczności między poszczególnymi segmentami krzywej. Odbywa się to przez wyodrębnienie kierunku między dwoma ostatnimi punktami kontrolnymi i kontynuowanie tego kierunku z dwoma pierwszymi punktami kontrolnymi kolejnej krzywej. W poniższym przykładzie tworzone są dwie oddzielne krzywe NURBS, które mimo to są gładkie jak jedna krzywa:

pts_1 = {};

pts_1[0] = Point.ByCoordinates(0, 0, 0);
pts_1[1] = Point.ByCoordinates(1, 1, 0);
pts_1[2] = Point.ByCoordinates(5, 0.2, 0);
pts_1[3] = Point.ByCoordinates(9, -3, 0);
pts_1[4] = Point.ByCoordinates(11, 2, 0);

crv_1 = NurbsCurve.ByControlPoints(pts_1, 3);

pts_2 = {};

pts_2[0] = pts_1[4];
end_dir = pts_1[4].Subtract(pts_1[3].AsVector());

pts_2[1] = Point.ByCoordinates(pts_2[0].X + end_dir.X,
    pts_2[0].Y + end_dir.Y, pts_2[0].Z + end_dir.Z);

pts_2[2] = Point.ByCoordinates(15, 1, 0);
pts_2[3] = Point.ByCoordinates(18, -2, 0);
pts_2[4] = Point.ByCoordinates(21, 0.5, 0);

crv_2 = NurbsCurve.ByControlPoints(pts_2, 3);

*Jest to bardzo uproszczony opis geometrii krzywej NURBS. Aby uzyskać dokładniejsze i bardziej szczegółowe omówienie, skorzystaj z dokumentacji w odniesieniach: Pottmann i inni, 2007 r.