Dynamo
Primer for v2.0
English
English
  • About
  • Introduction
    • What is Dynamo & How Does It Work?
    • Primer User Guide, Dynamo Community & Platform
  • Setup for Dynamo
  • User Interface
    • Workspace
    • Library
  • Nodes and Wires
  • Essential Nodes & Concepts
    • Index of Nodes
    • Geometry for Computational Design
      • Geometry Overview
      • Vector, Plane & Coordinate System
      • Points
      • Curves
      • Surfaces
      • Solids
      • Meshes
    • The Building Blocks of Programs
      • Data
      • Math
      • Logic
      • Strings
      • Color
    • Designing with Lists
      • What's a List
      • Working with Lists
      • Lists of Lists
      • n-Dimensional Lists
    • Dictionaries in Dynamo
      • What is a Dictionary
      • Dictionary Nodes
      • Dictionaries in Code Blocks
      • Revit Use-Cases
  • Custom Nodes & Packages
    • Custom Nodes
      • Custom Node Introduction
      • Creating a Custom Node
      • Publishing to Your Library
    • Packages
      • Package Introduction
      • Package Case Study - Mesh Toolkit
      • Developing a Package
      • Publishing a Package
      • Zero-Touch Importing
  • Dynamo for Revit
    • The Revit Connection
    • Selecting
    • Editing
    • Creating
    • Customizing
    • Documenting
  • Dynamo for Civil 3D
    • The Civil 3D Connection
    • Getting Started
    • Node Library
    • Sample Workflows
      • Roads
        • Light Pole Placement
      • Land
        • Service Placement
      • Utilities
        • Rename Structures
      • Rail
        • Clearance Envelope
      • Surveying
        • Point Group Management
    • Advanced Topics
      • Object Binding
      • Python and Civil 3D
    • Dynamo Player
    • Useful Packages
    • Resources
  • Dynamo in Forma Beta
    • Set Up Dynamo Player in Forma
    • Add and Share Graphs in Dynamo Player
    • Run Graphs in Dynamo Player
    • Dynamo compute service differences with Desktop Dynamo
  • Coding in Dynamo
    • Code Blocks and DesignScript
      • What's a Code Block
      • DesignScript Syntax
      • Shorthand
      • Functions
    • Geometry with DesignScript
      • DesignScript Geometry Basics
      • Geometric Primitives
      • Vector Math
      • Curves: Interpolated and Control Points
      • Translation, Rotation, and Other Transformations
      • Surfaces: Interpolated, Control Points, Loft, Revolve
      • Geometric Parameterization
      • Intersection and Trim
      • Geometric Booleans
      • Python Point Generators
    • Python
      • Python Nodes
      • Python and Revit
      • Setup Your Own Python Template
    • Language Changes
  • Best Practices
    • Graph Strategies
    • Scripting Strategies
    • Scripting Reference
    • Managing Your Program
    • Efficiently Working With Large Data Sets In Dynamo
  • Sample Workflows
    • Getting Started Workflows
      • Parametric Vase
      • Attractor Points
    • Concept Index
  • Developer Primer
    • Build Dynamo from Source
      • Build DynamoRevit from Source
      • Managing and Updating Dependencies in Dynamo
    • Developing for Dynamo
      • Getting Started
      • Zero-Touch Case Study - Grid Node
      • Executing Python Scripts in Zero-Touch Nodes (C#)
      • Going Further with Zero-Touch
      • Advanced Dynamo Node Customization
      • Using COM (interop) types in Dynamo Packages
      • NodeModel Case Study - Custom UI
      • Updating your Packages and Dynamo Libraries for Dynamo 2.x
      • Updating your Packages and Dynamo Libraries for Dynamo 3.x
      • Extensions
      • Defining Custom Package Organization for Dynamo 2.0+
      • Dynamo Command Line Interface
      • Dynamo Integration
      • Developing For Dynamo For Revit
      • Publish a Package
      • Build a Package from Visual Studio
      • Extensions as Packages
    • Pull Requests
    • Testing Expectations
    • Examples
  • Appendix
    • Frequently Asked Questions
    • Visual Programming and Dynamo
    • Resources
    • Release Notes
    • Useful Packages
    • Example Files
    • Host Integration Map
    • Download PDF
    • Dynamo Keyboard Shortcuts
Powered by GitBook
On this page
  • Union
  • Difference
  • Intersect
Edit on GitHub
Export as PDF
  1. Coding in Dynamo
  2. Geometry with DesignScript

Geometric Booleans

PreviousIntersection and TrimNextPython Point Generators

Last updated 3 years ago

Intersect, Trim, and SelectTrim are primarily used on lower-dimensional geometry such as Points, Curves, and Surfaces. Solid geometry on the other hand, has an additional set of methods for modifying form after their construction, both by subtracting material in a manner similar to Trim and combining elements together to form a larger whole.

Union

The Union method takes two solid objects and creates a single solid object out of the space covered by both objects. The overlapping space between objects is combined into the final form. This example combines a Sphere and a Cuboid into a single solid Sphere-Cube shape:

s1 = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin, 6);

s2 = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin.Translate(4, 0,
    0), 6);

combined = s1.Union(s2);

Difference

The Difference method, like Trim, subtracts away the contents of the input tool solid from the base solid. In this example we carve out a small indentation out of a sphere:

s = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin, 6);

tool = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin.Translate(10, 0,
    0), 6);

result = s.Difference(tool);

Intersect

The Intersect method returns the overlapping Solid between two solid Inputs. In the following example, Difference has been changed to Intersect, and the resulting Solid is the missing void initially carved out:

s = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin, 6);

tool = Sphere.ByCenterPointRadius(
    CoordinateSystem.Identity().Origin.Translate(10, 0,
    0), 6);

result = s.Intersect(tool);