Dynamo
Primer for v2.0
Русский
Русский
  • О программе
  • Введение
    • Что представляет собой программа Dynamo и как она работает?
    • Руководство пользователя Dynamo Primer, сообщество и платформа Dynamo
  • Настройка Dynamo
  • Пользовательский интерфейс
    • Рабочее пространство
    • Библиотека
  • Узлы и провода
  • Основные узлы и понятия
    • Указатель узлов
    • Геометрия для машинного проектирования
      • Обзор концепции геометрии
      • Вектор, плоскость и система координат
      • Точки
      • Кривые
      • Поверхности
      • Тела
      • Сети
    • Компоновочные блоки программ
      • Передача данных
      • Math
      • Logic
      • Строки
      • Цвет
    • Проектирование на основе списков
      • Что такое список
      • Работа со списками
      • Списки списков
      • Многомерные списки
    • Словари в Dynamo
      • Что такое словарь
      • Узлы Dictionary
      • Словари в узлах Code Block
      • Примеры использования Revit
  • Пользовательские узлы и пакеты
    • Пользовательские узлы
      • Пользовательские узлы: введение
      • Создание пользовательских узлов
      • Публикация узлов в библиотеку
    • Пакеты
      • Пакеты: введение
      • Практикум по работе с пакетом: Mesh Toolkit
      • Разработка пакетов
      • Публикация пакетов
      • Импорт Zero Touch
  • Dynamo для Revit
    • Подключение к Revit
    • Выбор
    • Редактирование
    • Создание
    • Адаптация
    • Выпуск документации
  • Dynamo for Civil 3D
    • Совместимость с Civil 3D
    • Начало работы
    • Библиотека узлов
    • Примеры рабочих процессов
      • Дороги
        • Размещение осветительных столбов
      • Землеустройство
        • Размещение коммуникаций
      • Инженерные сети
        • Переименование колодцев
      • Железная дорога
        • Границы зазора
      • Топосъемка
        • Управление группами точек
    • Дополнительные разделы
      • Привязка объекта
      • Python и Civil 3D
    • Проигрыватель Dynamo
    • Полезные пакеты
    • Ресурсы
  • Бета-версия Dynamo в Forma
    • Настройка Dynamo Player в Forma
    • Добавление графов и предоставление к ним общего доступа в Dynamo Player
    • Запуск графов в Dynamo Player
    • Отличия вычислительной службы Dynamo от классического приложения Dynamo
  • Создание кода в Dynamo
    • Узлы Code Block и DesignScript
      • Что такое Code Block
      • Синтаксис DesignScript
      • Сокращение
      • Функции
    • Создание геометрии с помощью DesignScript
      • Основы работы с геометрией посредством DesignScript
      • Геометрические примитивы
      • Векторная математика
      • Кривые: интерполяционные и по управляющим точкам
      • Перенос, поворот и другие преобразования
      • Поверхности: интерполяционные, лофтированные, по управляющим точкам и поверхности вращения
      • Параметризация геометрических объектов
      • Пересечение и обрезка
      • Логические операции с геометрическими объектами
      • Генераторы точек Python
    • Python
      • Узлы Python
      • Python и Revit
      • Настройка собственного шаблона Python
    • Изменения языка
  • Практические советы
    • Методы создания графиков
    • Методы создания сценариев
    • Справочник по созданию сценариев
    • Управление структурой программы
    • Эффективная работа с большими наборами данных в Dynamo
  • Примеры рабочих процессов
    • Процессы для начала работы
      • Параметрическая ваза
      • Точки притяжения
    • Индекс понятий
  • Руководство для разработчиков
    • Сборка Dynamo на основе исходного кода
      • Сборка DynamoRevit на основе исходного кода
      • Управление зависимостями и их обновление в Dynamo
    • Разработка для Dynamo
      • Начало работы
      • Пример использования узлов Zero-Touch — узел сетки
      • Выполнение сценариев Python в узлах Zero-Touch (C#)
      • Дальнейшая работа с Zero-Touch
      • Расширенная настройка узлов Dynamo
      • Использование типов COM (взаимодействие) в пакетах Dynamo
      • Пример использования NodeModel — настраиваемый пользовательский интерфейс
      • Обновление пакетов и библиотек Dynamo для Dynamo 2.x
      • Обновление пакетов и библиотек Dynamo для Dynamo 3.x
      • Расширения
      • Определение пользовательской организации пакетов для Dynamo 2.0 или более поздней версии
      • Интерфейс командной строки Dynamo
      • Интеграция с Dynamo
      • Разработка для Dynamo for Revit
      • Публикация пакета
      • Создание пакета из Visual Studio
      • Расширения в виде пакетов
    • Запросы на слияние
    • Ожидания от тестирования
    • Примеры
  • Приложение
    • Вопросы и ответы
    • Визуальное программирование и Dynamo
    • Ресурсы
    • Примечания к выпуску
    • Полезные пакеты
    • Файлы примеров
    • Таблица интеграции с основной программой
    • PDF для скачивания
    • Сочетания клавиш Dynamo
Powered by GitBook
On this page
  • Логические выражения
  • Условные выражения
  • Упражнение «Логика и геометрия»
  • Часть I. Фильтрация списка
  • Часть II. От логики к геометрии
Edit on GitHub
Export as PDF
  1. Основные узлы и понятия
  2. Компоновочные блоки программ

Logic

PreviousMathNextСтроки

Last updated 1 month ago

Логика (а точнее условная логика) позволяет задать действие или набор действий в зависимости от результата проверки. После прохождения проверки выдается логическое значение True или False, которое можно использовать для управления ходом программы.

Логические выражения

Числовые переменные могут хранить целый диапазон различных чисел. В логических переменных хранятся только два значения: «Истина» или «Ложь», да или нет, 1 или 0. Из-за ограниченной применимости логические операции можно не так часто встретить в расчетах.

Условные выражения

Выражение «If» является ключевым для программирования. Если некое условие истинно, то происходит что-то одно; в противном случае происходит что-то другое. Действие, выполняемое после проверки с помощью данного выражения, зависит от логического значения. Существует несколько способов определения выражения If в Dynamo.

Значок
Имя (синтаксис)
Входные данные
Выходные данные

If (If)

test, true, false

результат

Code Block ((x?y:z);)

X, Y, Z

результат

Рассмотрим краткий пример с каждым из этих трех узлов в действии, используя условное выражение If.

На этом изображении в узле boolean задано значение true. Это означает, что на выходе появится строка this is the result if true (это результат при истинном значении). Три узла, образующие выражение If, работают одинаково.

Напомним, что узлы работают одинаково. Если для boolean изменить значение на false, результатом будет число пи, как определено в исходном операторе If.

Упражнение «Логика и геометрия»

Скачайте файл с примером, щелкнув ссылку ниже.

Полный список файлов с примерами можно найти в приложении.

Часть I. Фильтрация списка

  1. Используем логику, чтобы разделить список чисел на список четных и список нечетных чисел.

a. Number Range. Добавление диапазона чисел в рабочую область.

b. Numbers. Добавление трех узлов Number в рабочую область. Каждый узел Number должен иметь следующие значения: 0.0 для start, 10.0 для end и 1.0 для step

c. Output. На выходе получается список из 11 чисел в диапазоне от 0 до 10.

d. Modulo (%). Диапазон номеров в качестве входных данных для x и значение 2.0 в качестве входных данных для y. При этом рассчитывается остаток каждого числа в списке при делении на 2. На выходе из этого списка будет представлен список чередующихся значений 0 и 1.

e. Equality Test (==). Добавление в рабочую область проверки равенства. Соедините выходные данные modulo с входным параметром x, а значение 0.0 с входным параметром y.

f. Watch. В качестве выходных данных проверки равенства будет представлен список значений «Истина» (true) и «Ложь» (false). С помощью этих значений элементы будут разделяться в списке. 0 (или true) соответствует четным числам, а 1 (или false) — нечетным.

g. List.FilterByBoolMask. Этот узел отфильтровывает значения по двум разным спискам в зависимости от вводимого логического выражения. Соедините исходный диапазон чисел с входным параметром list, а выходной параметр проверки равенства с входным параметром mask. В выходных данных in представлены истинные значения, а в out — ложные.

h. Watch. В результате мы получили списки четных и нечетных чисел. Итак, с помощью логических операторов мы разделили списки по определенному признаку.

Часть II. От логики к геометрии

Применим логику из первого упражнения к моделированию.

2. За основу возьмем предыдущее упражнение с теми же узлами. Помимо изменения формата, единственными исключениями будут следующие.

a. Используйте узел Sequence с этими входными значениями.

b. Отсоединен входной параметр list от узла List.FilterByBoolMask. Эти узлы пока не нужны, но они потребуются позже.

3. Начнем с создания отдельной группы Graph, как показано на изображении выше. Эта группа узлов представляет собой параметрическое уравнение для определения линейной кривой. Примечания.

a. Первый регулятор Number Slider представляет частоту волны в диапазоне от 1 до 4 с шагом 0,01.

b. Второй регулятор Number Slider представляет амплитуду волны в диапазоне от 0 до 1 с шагом 0,01.

c. PolyCurve.ByPoints. Если скопировать приведенную выше схему узлов, на видовом экране предварительного просмотра Dynamo будет создана синусоидальная кривая.

При вводе данных используйте числовые узлы для более статических свойств и регуляторы чисел для более гибких свойств. Необходимо сохранить исходный диапазон чисел, который определяется в начале этого шага. Однако синусоидальная кривая, которую мы пытаемся создать, должна обладать определенной гибкостью. Перемещая регуляторы, можно видеть частотные и амплитудные изменения кривой.

4. Забежим немного вперед и посмотрим на конечный результат, чтобы представить, каким он должен быть. Первые два шага выполняются отдельно, теперь их нужно соединить. С помощью базовой синусоидальной кривой будет определяться местоположение компонентов молнии, а с помощью логики «истина/ложь» — элементы меньшего или большего размера.

a. Math.RemapRange. С помощью последовательности чисел, созданной на шаге 02, сформируем новую последовательность чисел, перенастроив диапазон. Исходные числа из шага 01 имеют диапазон от 0 до 100. С помощью входных параметров newMin и newMax диапазон значений изменяется на 0–1 соответственно.

5. Создайте узел Curve.PointAtParameter, а затем соедините выходной параметр Math.RemapRange из шага 04 с входным параметром param.

На этом шаге создаются точки вдоль кривой. Диапазон чисел был перенастроен на 0–1, так как входной параметр param ищет значения в этом диапазоне. Значение 0 соответствует начальной точке, а значение 1 — конечным точкам. Все промежуточные числа относятся к диапазону [0,1].

6. Соедините выходной параметр узла Curve.PointAtParameter с узлом List.FilterByBoolMask, чтобы разделить список четных и нечетных индексов.

a. List.FilterByBoolMask. Соедините узел Curve.PointAtParameter из предыдущего шага с входным параметром list.

b. Watch. Узел Watch для in и узел Watch для out показывают, что имеется два списка — c четными и нечетными индексами. Тот же самый порядок точек используется в кривой, что демонстрируется на следующем шаге.

7. Далее используйте результат вывода из узла List.FilterByBoolMask на шаге 05 для создания геометрий с размерами в соответствии с индексами.

Cuboid.ByLength. Для создания молнии вдоль синусоидальной кривой воспроизведите связи, представленные на изображении выше. В данном случае кубоид — это просто рамка, размер которой определяется в зависимости от точки кривой в центре рамки. Теперь логика деления «четные/нечетные» в модели должна быть понятной.

a. Список кубоидов с четными индексами.

b. Список кубоидов с нечетными индексами.

Готово! Вы только что запрограммировали процесс определения геометрических размеров в соответствии с логической операцией, показанной в этом упражнении.

73KB
Building Blocks of Programs - Logic.dyn