Dynamo
Primer for v2.0
Italiano
Italiano
  • Informazioni
  • Introduzione
    • Che cos'è Dynamo e come funziona?
    • Guida introduttiva, comunità e piattaforma di Dynamo
  • Installazione per Dynamo
  • Interfaccia utente
    • Area di lavoro
    • Libreria
  • Nodi e fili
  • Nodi e concetti essenziali
    • Indice dei nodi
    • Geometria per la progettazione computazionale
      • Panoramica sulla geometria
      • Vettore, piano e sistema di coordinate
      • Punti
      • Curve
      • Superfici
      • Solidi
      • Mesh
    • Elementi di base dei programmi
      • Dati
      • Matematica
      • Logica
      • Stringhe
      • Colore
    • Progettazione con elenchi
      • Che cos'è un elenco?
      • Utilizzo di elenchi
      • Elenchi di elenchi
      • Elenchi n-dimensionali
    • Dizionari in Dynamo
      • Che cos'è un dizionario?
      • Nodi Dictionary
      • Dizionari nei blocchi di codice
      • Casi di utilizzo di Revit
  • Pacchetti e nodi personalizzati
    • Nodi personalizzati
      • Introduzione ai nodi personalizzati
      • Creazione di un nodo personalizzato
      • Pubblicazione nella libreria
    • Pacchetti
      • Introduzione ai pacchetti
      • Case study di un pacchetto - Mesh Toolkit
      • Sviluppo di un pacchetto
      • Pubblicazione di un pacchetto
      • Importazione zero-touch
  • Dynamo per Revit
    • Correlazione con Revit
    • Selezione
    • Modifica
    • Creazione
    • Personalizzazione
    • Documentazione
  • Dynamo for Civil 3D
    • Connessione a Civil 3D
    • Per iniziare
    • Libreria di nodi
    • Esempi di workflow
      • Strade
        • Posizionamento di lampioni
      • Gestione catastale
        • Posizionamento dei servizi
      • Impianti di pubblica utilità
        • Ridenominazione di strutture
      • Ferrovia
        • Sagoma dello spazio libero
      • Rilievi
        • Gestione di gruppi di punti
    • Argomenti avanzati
      • Unione di oggetti
      • Python e Civil 3D
    • Dynamo Player
    • Pacchetti utili
    • Risorse
  • Dynamo in Forma Beta
    • Impostazione di Dynamo Player in Forma
    • Aggiunta e condivisione di grafici in Dynamo Player
    • Esecuzione di grafici in Dynamo Player
    • Differenze tra Dynamo compute service e Desktop Dynamo
  • Codifica in Dynamo
    • Blocchi di codice e DesignScript
      • Cos'è un blocco di codice?
      • Sintassi di DesignScript
      • Sintassi abbreviata
      • Funzioni
    • Geometria con DesignScript
      • Nozioni di base della geometria DesignScript
      • Primitive geometriche
      • Matematica vettoriale
      • Curve: punti interpolati e di controllo
      • Traslazione, rotazione e altre trasformazioni
      • Superfici: punti interpolati e di controllo, loft, rivoluzione
      • Parametrizzazione geometrica
      • Intersezione e taglio
      • Operazioni booleane geometriche
      • Generatori di punti di Python
    • Python
      • Nodi Python
      • Python e Revit
      • Impostazione del modello di Python personalizzato
    • Modifiche al linguaggio
  • Procedure ottimali
    • Strategie sui grafici
    • Strategie di scripting
    • Riferimento per lo scripting
    • Gestione del programma
    • Utilizzo efficiente di set di dati di grandi dimensioni in Dynamo
  • Esempi di workflow
    • Introduzione ai workflow
      • Vaso parametrico
      • Punti attrattore
    • Indice concettuale
  • Guida introduttiva per sviluppatori
    • Compilazione di Dynamo dalla sorgente
      • Compilazione di DynamoRevit dalla sorgente
      • Gestione e aggiornamento delle dipendenze in Dynamo
    • Sviluppo per Dynamo
      • Per iniziare
      • Case study zero-touch - Nodo griglia
      • Esecuzione di script Python in nodi zero-touch (C#)
      • Ulteriori informazioni sul concetto di zero-touch
      • Personalizzazione avanzata dei nodi di Dynamo
      • Utilizzo di tipi COM (interoperabilità) nei pacchetti di Dynamo
      • Case study NodeModel - Interfaccia utente personalizzata
      • Aggiornamento di pacchetti e librerie di Dynamo per Dynamo 2.x
      • Aggiornamento di pacchetti e librerie di Dynamo per Dynamo 3.x
      • Estensioni
      • Definizione dell'organizzazione di pacchetti personalizzati (Dynamo 2.0 e versioni successive)
      • Interfaccia della riga di comando di Dynamo
      • Integrazione per Dynamo
      • Sviluppo per Dynamo for Revit
      • Pubblicazione di un pacchetto
      • Creazione di un pacchetto da Visual Studio
      • Estensioni come pacchetti
    • Richieste pull
    • Aspettative di test
    • Esempi
  • Appendice
    • Domande frequenti
    • Programmazione visiva e Dynamo
    • Risorse
    • Note di rilascio
    • Pacchetti utili
    • File di esempio
    • Mappa di integrazione host
    • Download del file PDF
    • Tasti di scelta rapida di Dynamo
Powered by GitBook
On this page
Edit on GitHub
Export as PDF
  1. Codifica in Dynamo
  2. Geometria con DesignScript

Parametrizzazione geometrica

PreviousSuperfici: punti interpolati e di controllo, loft, rivoluzioneNextIntersezione e taglio

Last updated 2 years ago

Nelle progettazioni computazionali, le curve e le superfici vengono spesso utilizzate come l'impalcatura sottostante per costruire la geometria successiva. Per poter utilizzare questa geometria iniziale come base per la geometria successiva, lo script deve essere in grado di estrarre qualità quali la posizione e l'orientamento nell'intera area dell'oggetto. Sia le curve che le superfici supportano questa estrazione, che è denominata parametrizzazione.

Tutti i punti su una curva possono essere considerati come un parametro unico compreso tra 0 e 1. Se si desidera creare una NurbsCurve basata su diversi punti di controllo o interpolati, il primo punto avrà il parametro 0 e l'ultimo punto avrà il parametro 1. Non è possibile sapere in anticipo quale sia l'esatto parametro qualunque sia il punto intermedio, il che potrebbe sembrare una limitazione grave, tuttavia ciò è mitigato da una serie di funzioni di utilità. Le superfici hanno una parametrizzazione simile a quella delle curve, anche se con due parametri invece di uno, denominati u e v. Se si desidera creare una superficie con i seguenti punti:

pts = [ [p1, p2, p3],
        [p4, p5, p6],
        [p7, p8, p9] ];

p1 avrebbe il parametro u = 0 v = 0, mentre p9 avrebbe i parametri u = 1 v = 1.

La parametrizzazione non è particolarmente utile per determinare i punti utilizzati per generare le curve; il suo uso principale è determinare le posizioni dei punti intermedi generati dai costruttori NurbsCurve e NurbsSurface.

Le curve hanno un metodo PointAtParameter, che utilizza un singolo argomento doppio compreso tra 0 e 1 e restituisce l'oggetto Point in corrispondenza di tale parametro. Ad esempio, questo script trova i Point in corrispondenza dei parametri 0, .1, .2, .3, .4, .5, .6, .7, .8, .9 e 1:

pts = {};
pts[0] = Point.ByCoordinates(4, 0, 0);
pts[1] = Point.ByCoordinates(6, 0, 1);
pts[2] = Point.ByCoordinates(4, 0, 2);
pts[3] = Point.ByCoordinates(4, 0, 3);
pts[4] = Point.ByCoordinates(4, 0, 4);
pts[5] = Point.ByCoordinates(3, 0, 5);
pts[6] = Point.ByCoordinates(4, 0, 6);

crv = NurbsCurve.ByPoints(pts);

pts_at_param = crv.PointAtParameter(0..1..#11);

// draw Lines to help visualize the points
lines = Line.ByStartPointEndPoint(pts_at_param,
    Point.ByCoordinates(4, 6, 0));

Analogamente, le superfici hanno un metodo PointAtParameter che utilizza due argomenti, il parametro u e v del Point generato.

Sebbene l'estrazione di punti singoli su una curva e una superficie possa essere utile, gli script spesso richiedono la conoscenza delle particolari caratteristiche geometriche in corrispondenza di un parametro, ad esempio qual è la direzione della curva o della superficie. Il metodo CoordinateSystemAtParameter non solo individua la posizione, ma anche un CoordinateSystem orientato in corrispondenza del parametro di una curva o superficie. Ad esempio, il seguente script estrae i CoordinateSystem orientati lungo una superficie di rivoluzione e utilizza l'orientamento dei CoordinateSystem per generare linee che si staccano dalla normale alla superficie:

pts = {};
pts[0] = Point.ByCoordinates(4, 0, 0);
pts[1] = Point.ByCoordinates(3, 0, 1);
pts[2] = Point.ByCoordinates(4, 0, 2);
pts[3] = Point.ByCoordinates(4, 0, 3);
pts[4] = Point.ByCoordinates(4, 0, 4);
pts[5] = Point.ByCoordinates(5, 0, 5);
pts[6] = Point.ByCoordinates(4, 0, 6);
pts[7] = Point.ByCoordinates(4, 0, 7);

crv = NurbsCurve.ByPoints(pts);

axis_origin = Point.ByCoordinates(0, 0, 0);
axis = Vector.ByCoordinates(0, 0, 1);

surf = Surface.ByRevolve(crv, axis_origin, axis, 90,
    140);

cs_array = surf.CoordinateSystemAtParameter(
    (0..1..#7)<1>, (0..1..#7)<2>);

def make_line(cs : CoordinateSystem) {
	lines_start = cs.Origin;
    lines_end = cs.Origin.Translate(cs.ZAxis, -0.75);

    return = Line.ByStartPointEndPoint(lines_start,
        lines_end);
}

lines = make_line(Flatten(cs_array));

Come detto in precedenza, la parametrizzazione non è sempre uniforme per tutta la lunghezza di una curva o di una superficie, ovvero il parametro 0.5 non corrisponde sempre al punto medio e 0.25 non sempre corrisponde al punto un quarto lungo una curva o superficie. Per ovviare a questa limitazione, le curve dispongono di un insieme aggiuntivo di comandi di parametrizzazione che consentono di trovare un punto in corrispondenza di lunghezze specifiche lungo una curva.